Synthesis of Potential Antineoplastic Agents. XV. Some 1,4-Bisamides of $1,2,3,4$-Tetrahydroquinoxaline ${ }^{1.2}$

Peter S̈chlyler, ${ }^{3}$ Frank D. Popp, Aima Catala Ioble, Dry W. Alwani, And Barry R. Masters
Depurtment of Chemistry, Clarkson College of Technology, I'otedam, New York
Receined Mureh 1.5, I/hiti

Abstract

A number of chlorine-contaning and matirated 1,4 -bisanides lave been prepared from $1,2,3,4$-tetrahydroquinoxaline and from substituted $1,2,3,4$-tetrahydrogninowalines. Althongh many of these amides are active against KB cell culnre, ther are inactive against animal thmors. A number of related amides were abo prepared from 1,2,3,4-tetrahydroquinoline and 1,2,3,4-tetralydroisoqninoline.

In 1961 it was reported ${ }^{4}$ that $\lambda^{-} N^{\prime}$-bis (3 -bromopropionyl)piperazine ($\mathrm{I}, \mathrm{X}=\mathrm{Br}$) produced potent and reproducible antineoplastic activity in mice. It was also shown that the β-bromo substituent could be replaced by chloro or by methanesulfonyloxy and still have activity maintancd. In view of the activity of I we reported ${ }^{6}$ the preparation of a series of 3 -chloropropionyl conmpounds from a variety of nitrogen heterocyclic systems. That paper" indicated that the 3-chloropropionylanides prepared were essentially inactive against the Dumming leukemia and against Adenocarcinoma 755. After the publication of that report, however, it was noted that the tetrahydroquinoxaline derivative II exhibited reproducible activity ${ }^{6}$ against the KB ecell culture system. The: related tetrahydroquinoxaline derivative $I I I^{5}$ was also active in this system. In riew of this activity it was decided to investigate additional analogs of II and III

to see if the cell culture activity could be extended to amimal systems. In some cases the corresponding λ^{-} substituted 1,2,3,4-tetrahydroguinolines and 1,2,3,4tetrahydroisoquinolines were also prepared as model compounds.

The substituted 1,2,3,4-tetrahydroquinoxalines were readily prepared by hydrogenation of the corresponding quinoxalines. These tetrahydroquinoxalines were treated with a number of acid chlorides to give the compounds in Table I and some of the compounds in Table II. The remaining compounds of the type III found in Table II were prepared by dehydrohalogenation on alumina of the corresponding :3-chloropropionyl com-

[^0]pound. ${ }^{5}$ 1-Ethyl-1,2,3,4-tetrahydroquinoxaline was treated with 3 -chloropropionyl chloride to give IV. 1,2.3,4-Tetrahydroquinoline and $1,2,3,4$-tetrahydroisoquinoline were allowed to react with acid chlorides to give the compounds in Table III.

The two parent compounds (V, $\mathrm{R}=\mathrm{H}$, (I) in the tetrahydroquinoxaline series were also prepared. The former ($\mathrm{V}, \mathrm{R}=\mathrm{H}$) which had origimally been pre-

pared ${ }^{7}$ by formylation of $1,2,3,4$-tetrahydroguinoxaline was prepared in this work by a reductive formylations ${ }^{\text {s }}$ of quinoxaline. The latter ($\mathrm{V}, \mathrm{R}=\mathrm{Cl}$) was prepared by the addition of phosgenc to $1,2,3,4$-tetrahydroquinoxalinc.

The monohydrothloride of the tetrahydroquinoxaline mustard VI was prepared in low yield by lithiun aluminmm hydride reduction of 1.4 -bis(chloroacctyl)-$1,2,8,4$-tet tahydroquinoxaline. When diborane was used as the reducing agent, however, VI was obtained in an 80% yicld.

The anticancer screening results for the various quinoxaline derivatives are included in Table IV. It can be noted that all of the compounds derived from chloroacetyl chloride and all of the compounds related to III were artive ${ }^{9}$ against KB cell culture. Only with quinoxaline itself, howerer, was the chloropropionyl compound (II) attive Extension of this chain to four carbons or introduction of substituents on the rinyl group of III caused loss of activity. All of the compounds tested failed to exhibit thy significunt activity against the ammal tumors used. The reduction product VI, however, cxhibited a T / C of 216% at a dose of $160 \mathrm{mg} / \mathrm{kg}$ against the Duming leukenia.

The anticancer screcning results for the quinolincs and isoquinolines are included in Table V. No appreciable activity is noted for these compounds either against cell culture or animal tumors.

[^1]Table I
Amides of $1,2,3,4$-Tetrahydroquinoxaline

\quad Ring substituent
None
None ${ }^{a}$
None
None
None
2-Methyl
2-Methyl
6,7-Dimethyl
6,7-Dimethyl
2,3-Dimethyl
2,3-Dimethyl
5,6,7,8-Dibenzo
5,6,7,8-Dibenzo

R	Mp. ${ }^{\circ} \mathrm{C}$	Yield.	Calcd. \%		
			C	H	N
$\mathrm{C}_{2} \mathrm{H}_{3}$	124-125	78	68.27	7.37	11.37
$\mathrm{CH}_{2} \mathrm{Cl}$	175-176	57	50.20	4.17	9.75
$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Cl}$	121-122 ${ }^{\text {b }}$	83			
$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Cl}$	Oil ${ }^{\circ}$	20	56.00	5.87	8.18
CHCl_{2}	121-122	62	40.48	2.83	7.87
$\mathrm{CH}_{2} \mathrm{Cl}$	119-120	44	51.80	4.69	9.32
$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Cl}$	Oil ${ }^{\text {c }}$	39	54.80	5.50	8.53
$\mathrm{CH}_{2} \mathrm{Cl}$	136-137	77	53.40	5.08	8.89
$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Cl}$	128-129	70	56.10	5.83	8.17
$\mathrm{CH}_{2} \mathrm{Cl}$	148-149	56	53.40	5.08	8.89
$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Cl}$	124-125	78	56.10	5.83	8.17
$\mathrm{CH}_{2} \mathrm{Cl}$	267-268	25	62.10	4.13	7.23
$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Cl}$	209-210	94	63.60	4.86	6.75

c	H	\cdots
68.15	7.38	11.31
49.89	4.12	9.71
55.60	5.55	8.01
40.42	2.86	7.62
51.55	4.74	9.45
54.38	5.51	8.32
53.69	5.36	8.69
56.05	6.16	7.93
53.11	5.20	8.77
55.82	5.87	8.00
61.68	4.18	7.18
63.44	4.79	6.59

${ }^{a}$ Anal. Caicd: Cl, 24.69. Found: Cl, 24.39. ${ }^{b}$ Lit. ${ }^{5} \mathrm{mp} 119-120^{\circ}$. ${ }^{\circ}$ Purified by chromatography on acid-washed alumina. ${ }^{d}$ Anal. Calcd: Cl, 39.83. Found: $\mathrm{Cl}, 39.65$. e Anal. Caled: $\mathrm{Cl}, 22.41$. Found: $\mathrm{Cl}, 22.43$. ${ }^{f}$ Anal. Caled: $\mathrm{Cl}, 20.65$. Found: Cl , 20.60. Anal. Calcd: Cl, 17.09. Found: Cl, 17.15.

Table II
Unsaturated Amides of $1,2,3,4$-Tetrahydroquinoxaline

$\underset{\text { Rubstituent }}{\text { Ring }}$	R_{1}	R_{2}	Mp. ${ }^{\circ} \mathrm{C}$	Yield, $\%$	Method ${ }^{\text {a }}$	($\underset{H}{\text { Caled, }}$	N	C	$\underset{\mathrm{H}}{\text { Found, } \%}-\mathrm{N}$	
None	H	H	171-172 ${ }^{\text {b }}$	62	A						
None	H	CH_{3}	101-103	63	A	71.09	6.71	10.36	71.07	6.61	10.22
None	CH_{3}	H	164-165	88	A	71.09	6.71	10.36	71.02	6.69	10.32
None	H	$\mathrm{C}_{6} \mathrm{H}_{5}$	170-171	77	A	78.52	5.80	7.33	78.78	5.46	7.08
2-Methyl	H	H	58-60	68	B	70.30	6.28	10.93	70.67	6.51	10.34
6,7-Dimethyl	H	H	106-107	76	B	71.10	6.70	10.40	70.87	6.69	10.30
2,3-Dimethyl	H	H	130-131	97	B	71.10	6.70	10.40	70.85	6.56	10.40

${ }^{a}$ Method A by direct condensation of acid chloride and $1,2,3,4$ tetrahydroquinoxaline. Method B by alumina chromatography of 1,4-bis(3-chloropropionyl)-1,2,3,4-tetrahydroquinoxaline. ${ }^{b}$ Lit. ${ }^{5} \mathrm{mp} 172-174^{\circ}$ by method B .

Table III
N-Acyl- $1,2,3,4$-tetrahydroquinolines and - $1,2,3,4$-tetrahydroisoquinolines
$>\mathrm{NCOR}$

Tetrahydro	R	$\begin{gathered} \mathrm{Bp}(\mathrm{~mm}) \text { or } \\ \mathrm{mp},{ }^{\circ} \mathrm{C} \end{gathered}$	Yield. $\%$	_-_Calcd. \% -			- Found. $\%$ -		
base used				C	H	N			
Quinoline	$\mathrm{CH}=\mathrm{CHCH}_{3}$	158-159 (2) ${ }^{\text {a }}$	73	77.56	7.51	6.96	77.55	7.39	6.87
Quinoline	$\mathrm{CCH}_{3}=\mathrm{CH}_{2}$	56-58 ${ }^{\text {b }}$	70	77.56	7.51	6.96	77.30	7.45	7.00
Quinoline	$\mathrm{CH}=\mathrm{CHC}_{6} \mathrm{H}_{5}$	98-99	96	82.10	6.51	5.32	81.92	6.47	5.41
Quinoline	$\mathrm{CH}=\mathrm{CHCO}$	196-198	84	76.28	6.40	8.09	76.28	6.40	7.98
Isoquinoline ${ }^{\text {c }}$	CHCl_{2}	87-88	78	54.12	4.54	5.74	54.20	4.52	5.84
Isoquinoline	$\mathrm{CCH}_{3}=\mathrm{CH}_{2}$	123-124 (0.2)	67	77.56	7.51	6.96	77.33	7.47	6.84
Isoquinoline	$\mathrm{CH}=\mathrm{CHCH}_{3}$	75-76 ${ }^{\text {b }}$	71	77.56	7.51	6.96	77.51	7.43	6.82
Isoquinoline	$\mathrm{CH}=\mathrm{CHC}_{6} \mathrm{H}_{5}$	$109-110^{\text {d }}$	99	82.10	6.51	5.32	82.00	6.54	5.36
Isoquinoline	$\mathrm{CH}=\mathrm{CHCO}-$	169-170	89	76.28	6.40	8.09	76.07	6.52	8.20

${ }^{a}$ J. R. Geigy, A. G. [Swiss Patent 267,560 (1950); Chem. Abstr., 45, 6219 (1951)] reported bp $143-147^{\circ}(0.2 \mathrm{~mm})$. ${ }^{b}$ Recrystallized from ethyl ether. ${ }^{c}$ Anal. Caled: Cl, 29.05. Found: Cl, 29.10. ${ }^{d}$ N. H. Cromwell and J. A. Caughlan [J. Am. Chem. Soc., 67, 903 (1945)] reported mp 101°.

TIBRLE 1

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
lime \\
sulstituent
\end{tabular}} \& \multirow[b]{2}{*}{R} \& \multicolumn{2}{|l|}{} \& \& \multirow[b]{2}{*}{LE*} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{kra

(4)} \& \multirow[b]{2}{*}{$0_{1} \mathrm{lam}^{4}$}

\hline \& \& \& slone \& W ${ }^{\text {d }}$ \& \& \& \&

\hline Vonle \& $\mathrm{CH}_{2} \mathrm{Cl}$ \& 1.: $\times 10^{10}$ \& -1.0) \& $7+25$ \& \& \& \&

\hline None, \& (HCl_{2} \& 2.7×10 \& - 2. $^{\text {a }}$ \& \& 100/90) \& 31/125 \& \& 51)/100

\hline Nonle \& $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{Cl}$ \& $\therefore .0 \times 10^{1}$ \& -0. H \& 107/50 \& $10: 3 / 000$ \& 105:500 \& 91/500 \& $00 / 100{ }^{3}$

\hline Nonle \& $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ \& $1 . \pm \times 10^{1}$ \& -0.5 \& \& \& \& \&

\hline Nobre \& $\mathrm{CH}=\mathrm{CH}_{2}$ \& $\because .3 \times 10$ \& -1.1 \& \& \& \& 105/100) \&

\hline Nonle \& $\mathrm{CH}=\mathrm{CHC}_{6} \mathrm{H}_{4}$ \& 2.0×10^{1} \& -11.9 \& \& 9:3/400 \& $8 \mathrm{~s} / 500$ \& \&

\hline Nome \& $\mathrm{CHH}_{3}=\mathrm{CH}_{2}$ \& 7.0×10^{1} \& - 0.5 \& \& 98/300 \& 106/500 \& \&

\hline 2-Merhyl \& $\mathrm{CH} \mathrm{Cl}_{2}$ \& :i. 0×10^{-1} \& -1.2 \& Sis/i \& 017 \& 114/4 \& \& -5/4

\hline 2-Merhyl \& $\mathrm{CHzCH}_{2} \mathrm{Cl}$ \& $7 . \times \times 10{ }^{4}$ \& -0. 5 \& 113/2001 \& \& \& \&

\hline 2-Merly \& $\mathrm{CH}=\mathrm{CH}_{2}$ \& 4.1×10^{4} \& -0.6 \& \& 100/100 \& $78 / 125$ \& $70 / 100$ \&

\hline 2,3-1)inlethyl \& $\mathrm{CH}_{2} \mathrm{Cl}$ \& 1.8×10^{-1} \& -0.4 \& $7!7$ \& \& \& \&

\hline 2.3 -1 innethy \& $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ \& 3.7×10^{1} \& -1.1 \& $84 / 200$ \& \& \& \&

\hline 2,3-1 imetly \& $\mathrm{OH}=\mathrm{CH}_{2}$ \& $2 \times 10{ }^{2}$ \& -1.8 \& \& 510/20111 \& 1.71/250 \& $142 / 200$ \& 20/0.:3

\hline (i,7-1)imethyl \& CH Cl \& 1.1×100 \& -1. \therefore \& 1:3/7 \& 100120 \& \& \&

\hline ($, 7,7$-1)imerhyd \& $\mathrm{ClH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ \& 9.8×10^{10} \& -1. \& 60/100 \& \& \& \&

\hline (3,7-b)innetly \& $\mathrm{CH}=\mathrm{CH}_{2}$ \& 2.5×10^{n} \& -1.if \& \& 11:3/51 \& $97 / 200$ \& $167 / 200$ \&

\hline 万, 6, 7, S-Dibenzo \& $\mathrm{CH}_{2} \mathrm{Cl}$ \& $\because 2 \times 10^{11}$ \& -1 i \& 107/100 \& \& \& \&

\hline \& $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ \& .11.0 $\times 100$ \& \& $7 \% 20$ \& \& \& \&

\hline
\end{tabular}

 hung (arcinoma. ${ }^{h}$ Dhming lenkemia (solid). Also inactive against spindle cell sarcona, leiomyonarcoma of uterus, and Yoshida sareoma (remits kindly supplied by Dr. W. F. Dunning, Eniversity of Miani.). Hisl human surcoma (rat egg). ${ }^{6}$ L5178Y lymphatic lenkenia. Walker carcinomil 2:6/feytox:13 (oc).

Tabie: 1

$$
>\mathrm{NCOR}
$$

 lenkenia (areiter).

Experimental Section ${ }^{10}$

$\mathbf{1 , 2 , 3}, 4$-Tetrahydroquinoxalines.-A mixture of 0.04 mole of the quinoxaline, 0.02 g of PtO_{2}, and 150 ml of 95% ethanol or glacial acetic acid was hydrogenated at $4.2 \mathrm{~kg} / \mathrm{cm}^{2}$. After the theoretical pressine drop, the mixture was warmed on a steam bath and filtered. The ethanol solntion was concentrated or the aretic acid was made basic to give, after rerrystalization from ethanol-water or petrolenm ether (hp 60-90 $)^{\circ}$, the $1,2,3,4-$ retrahydrocininowalines.
(10) Analyses by Flang Microanalytical Laboratory, Aun Arbor, Niel. Meltilug winta ate taken in capullaries and ate porreded.

The following $1,2,3,4$-tetrahydroquinoxalines have been prepared by this method: no substituent, "11 yield 93\% in ethanol: $2-$ nethyl, 12 yield 10% in erhanol and 93% in acetic acid; 6,7dimethyl, yield 730° in ethanol, mp 143-1440 (Anal. Caled for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2}$: $\mathrm{C}, 74.10$; H. S.65: N, 17.30 . Found: C, 74.00 ; 11, 8.65; N, 17.35.) : 2. 3 -dimethyl, ${ }^{13}$ yield 77% in ethanol; $5,6,7$, . $\$$-dibenzo, yield 3 , in ethanol and 60% in acetic acid, mp, 1 ss 191° (Anal. Caled for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2}$: C, $82.10 ; \mathrm{H}, \mathrm{\delta} .99 ; \mathrm{N}, 11.95$ Fonnd: C, 81.6s; 11, $5 . \mathrm{ft}^{-1} ; \mathrm{N}, 11.68$.).

[^2]1,4-Bisamides of 1,2,3,4-Tetrahydroquinoxaline.--To a solution of 0.05 mole of tetrahydroquinoxaline in 100 ml of anhydrous chloroform at 0° was added dropwise with constant stirring a solution of 0.11 mole of the acyl chloride in 50 ml of anhydrous CHCl_{3}. When the addition was complete, the mixture was refluxed until evolution of HCl had ceased. Filtration, followed by concentration in vacuo, and when necessary trituration with ether, gave solids that were purified by recrystallization from ethanol. The compounds prepared by this method are listed in Tables I and II (method A).

1-Ethyl-4-(3-chloropropionyl)-1,2,3,4-tetrahydroquinoxaline (IV).-Reaction of 0.031 mole of 1 -ethyl-1,2,3,4-tetrahydroquinoxaline ${ }^{14}$ in 75 ml of chloroform with 0.031 mole of 3 -chloropropionyl chloride in 25 ml of CHCl_{3} by the general procedure described above gave an 84% yield of a thick oil. Treatment of this oil in ether with HCl gave the hydrochloride, $\mathrm{mp} 140-142^{\circ}$ (from tetrahydrofuran).

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O} \cdot \mathrm{HCl}: \mathrm{C}, 54.05 ; \mathrm{H}, 6.27 ; \mathrm{N}$, $9.69 ; \mathrm{Cl}, 24.52$. Found: C, $54.16 ; \mathbf{H}, 6.51 ; \mathrm{N}, 9.91 ; \mathrm{Cl}$, 24.25 .

Amides of Tetrahydroquinoline and Tetrahydroisoquinoline.Using the same general procedure as described above for the bisamides, 0.05 mole of amine and 0.06 mole of acyl chloride were allowed to react to give after recrystallization from ethanol the materials listed in Table III.

1,4-(Diacrylyl)-1,2,3,4-tetrahydroquinoxalines.--The 1,4-bis-(3-chloropropionyl)-1,2,3,4-tetrahydroquinoxalines in benzene were chromatographed over Merck reagent grade aluminum oxide and eluted with benzene-ethanol (9:1) to give, as previously reported, ${ }^{5}$ the compounds listed in Table II (method B).
(14) R. F. Smith, W. J. Rebel, and T. N. Beach, J. Org. Chem., 24, 205 (1959).

1,4-Diformyl-1,2,3,4-Tetrahydroquinoxaline (V, $\mathrm{R}=\mathrm{H}$).-A solution of 0.036 mole of quinoxaline in 30 ml of formic acid and 100 ml of dimethylformamide was refluxed for 16 hr . The resuiting solution was poured onto ice and the aqueous solution was extracted continuously with ether for 48 hr . The ethereal solution was dried and concentrated in vacuo to give an oil which crystallized on trituration with ethanol. Recrystallization from ethanol gave $3.0 \mathrm{~g}\left(44 \%\right.$), mp $125-126^{\circ}$, lit. ${ }^{7} \mathrm{mp} 119-$ 122°.
Anal. Caled for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}, 63.14 ; \mathrm{H}, 5.29 ; \mathrm{N}, 14.72$. Found: C, 63.12; H, 5.14; N, 14.69.

1,4-Bis(chlorocarbonyl)-1,2,3,4-tetrahydroquinoxaline ($\mathbf{V}, \mathrm{R}=$ $\mathrm{Cl})$.-A solution of 0.03 mole of $1,2,3,4$-tetrahydroquinoxaline in 30 ml of benzene was added dropwise with stirring and cooling to a solution of 0.06 mole of phosgene in 50 ml of benzene. After addition the mixture was refluxed for several hours and concentrated in vacuo to give $5.9 \mathrm{~g}\left(76 \%\right.$) of a solid, $\mathrm{mp} 92-93^{\circ}$ (from isopropyl ether).
Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{3} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$: $\mathrm{C}, 46.35: \quad \mathrm{H}, 3.11: ~ N$, 10.81; Cl, 27.37. Found: C, 46.50; $\mathrm{H}, 3.22$; $\mathrm{N}, 10.66$; Cl , 27.16.

1,4-Bis(2-chloroethyl)-1,2,3,4-tetrahydroquinoxaline (VI).-A solution of 0.015 mole of 1,4-bis(chloroacetyl)-1,2,3,4-tetrahydroquinoxaline in 200 ml of tetrahydrofuran (THF) was added dropwise with stirring to 50 ml of a 1% solution of borane under nitrogen at -10°. After the resulting mixture was refluxed for $1 \mathrm{hr}, 8 \mathrm{ml}$ of 6 N HCl was added followed by 75 ml of water. The THF was distilied and excess solid NaOH was added. The resulting mixture was extracted with ether, and the dried ether extract was concentrated to give $3.55 \mathrm{~g}(80 \%)$ of a yellow oil. The hydrochloride was prepared and recrystallized from THF, mp 149-152

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{2} \cdot \mathrm{HCl}: \mathrm{C}, 48.76 ; \mathrm{H}, 5.80$; N, 9.48 ; Cl, 35.98 . Found: C, 49.00 ; H, 5.71 ; N, $9.7 \overline{7}$; Cl, 35.92.

Hypoglycemic Activity and Pharmacological Picture of 4-(1-Naphthyl)butylamine Derivatives

Silivayo Casadio, Tiberio Bruzzese, Gianfranco Pala, Germano Coppi, and Carla Turba
Research Laboratories of Istituto De Angeli S.p.A., Milan, Italy

Received March 1, 1966

Abstract

Forty-nine 4-(1-naphthyl)butylamine derivatives were prepared for hypoglycemic tests. They were also submitted to comprehensive screening, in order to obtain as complete as possible a pharmacological picture. The majority of the compounds examined revealed marked hypoglycemic activity, and of these the α-isopropyl-α-(3-dimethylaminopropyl)- (XXIII) and α, α-di(3-dimethylaminopropyl)-1-naphthylacetic acids (XXIV) were found to be the most active and comparable with chlorpropamide. None of the other actions investigated revealed anything of particular interest.

Our finding ${ }^{1}$ that some α-aminoethyl-1-naphthylacetic acids possess hypoglycemic activity has led us to extend this investigation to compounds with related structures. Preliminary studies showed that substitution with an aminopropyl chain in the α position of 1-naphthylacetic acid was the most pronising for reaching the highest activity, and an extensive series of 4-(1-naphthyl)butylamines of the following general structure was prepared. The methods used in obtaining the new compounds were quite similar to those reported in previous papers ${ }^{1,2}$ and, in any case, are well illustrated in the Experimental Section.

[^3]
$\mathrm{R}=\mathrm{H}$, alkyl, or aminopropyl
$\mathrm{R}^{\prime}=\mathrm{CN}, \mathrm{CONH}_{2}, \mathrm{CO}_{2} \mathrm{H}, \mathrm{CO}_{2} \mathrm{R}^{\prime \prime}, \mathrm{CONHR}{ }^{\prime \prime}, \mathrm{CONPr}{ }_{2}$, CONHCONHPr, CNHR ${ }^{\prime \prime}$, or COEt ($\mathrm{R}^{\prime \prime}=$ alkyl, cyclohexyl, allyl, or phenyl)
$\mathrm{NAA}=$ tertiary amino group
The title compounds were submitted to a pharmacological investigation which included not only examination of the hypoglycenic action, but also studies of acute toxicity, behavioral effects, and antiinflammatory, analgesic, local anesthetic, antitussive, diuretic, antispasmodic, antipyretic. choleretic, and hypoten-

[^0]: 9. 540 (1466).
 2) Supported in part by research grants from the American Cancel Suciety (T-177D) aud from the National Caucer Iustitute, U. S. Publi, Health Service (CA 06606-03). Presented in 19art at the 150th National Meeting of the American Chemical saciety, Atlantic City, N. J., Sept 196t.
 (3) A portion of this work was abstracted from the M.S. thesis of P.S.
 14) J. A. (arbon, S. M. Brelim, and J. D). Ratajezyk, Abstracts, 139th Natianal Meeting of the American Chemieal Sotiety; Sit. Iouis, Mo., March 1961, p 11-N
 Chem., 5. 398 (1062).
 (i) screening results huve been eundien by the (ancer Chemathera)y National service Center (CNSC)

[^1]:
 is, 1. Baxter, L. TV, Mhan, and G. A. Swan, J. Chem. Site, 3645 (1905).
 (9) In this system the activity of the compound is considered to be statistically signifieant if the ED D_{c} is $\pm \times 10^{\mathrm{al}} \mu \mathrm{g} / \mathrm{nl}$ or less.

[^2]: 411, I. C. Civagut and F. T. Wiselogle, J. Am. Chein. Sin., 69, This (194.i.
 (12) M. Munk and H. 1'. Solultz, itid. 74, 3433 (1952).

[^3]: (1) G. Pala, T. Bruzzese. E. Marazzi-Uberti, and G. Coppi, J. Med. Chem. 9, 603 (1966).
 (2) (a) S. Casadio, G. Pala, E. Crescenzi, T. Bruzzese, E. MarazziÜberti, and G. Coppi, ibid., 8, 589 (1965): (b) S. Casadio, G. Pala, T. Bruzzese, E. Crescenzi, E. Marazzi-Uberti, and G. Coppi, ibid., 8, 594 (1965): (c) G. Pala, T. Bruzzese, E. Marazzi-Uberti, and G. Coppi, Farmaco (Pavia), Ed. Sci., 19, 731 (1964): (d) G. Pala, T. Bruzzese, E, MarazziUberti, and G. Coppi, ibid., 19, 933 (1964).

